# **Botryllamides E–H, Four New Tyrosine Derivatives from the Ascidian** *Botrylloides tyreum*

## M. Rama Rao\* and D. John Faulkner<sup>†</sup>

Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0212

### Received January 17, 2004

A specimen of the ascidian *Botrylloides tyreum* from Palau contained the known metabolites botryllamides A (5) and C (7) together with four new tyrosine derivatives, botryllamides E-H (1–4), the structures of which were elucidated by interpretation of spectroscopic data. The botryllamides exhibited weak cytotoxicity against the HCT-116 cell line.

Ascidians (tunicates) are prolific producers of amino acidderived secondary metabolites, many of which have been reported to possess cytotoxicity.<sup>1-4</sup> In 1995, McDonald et al. reported the isolation of four bromotyrosine derivatives, botryllamides A–D (**5–8**), from the styelid ascidian *Botryllus* sp. from Siquijor Island in the Philippines and from *Botryllus schlosseri* from the Great Barrier Reef, Australia.<sup>5</sup> In this paper, we report the structural elucidation of botryllamides E–H (**1–4**), which were isolated, together with the known metabolites botryllamides A (**1**) and C (**3**), from a specimen of *Botrylloides tyreum* from Palau.

The encrusting ascidian *B. tyreum* was collected by hand using scuba (-1 m) from a temporary floating bridge between Koror and Babeldaob, Republic of Palau.<sup>6</sup> The ethyl acetate-soluble material from a methanolic extract showed moderate activity against the HCT-116 cell line and was subjected to column chromatography on silica gel to obtain three active fractions, two of which consisted predominantly of botryllamide A (5). Further fractionation of the third active fraction by HPLC using normal- and reversed-phase supports gave botryllamides A (5), C (7), E (1), F (2), and G (3). Botryllamide H (4) precipitated from a more polar but inactive fraction. The <sup>1</sup>H NMR spectra of the fractions were devoid of a singlet at ca. 6.14 ppm, which is found in the spectra of botrylamides B (6) and D (8).

Botryllamide E (1) was obtained as a colorless gum. A molecular formula of C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub>, which requires 11 degrees of unsaturation, was deduced from high-resolution mass measurement of the  $[M + Na]^+$  ion at m/z 348.1205 ( $\Delta - 0.1$ mmu). The IR spectrum contained a very broad band centered at 3350 cm<sup>-1</sup> (phenol) and bands at 3260 and 1635 cm<sup>-1</sup> assigned to an amide group. The <sup>13</sup>C NMR spectrum contained only 15 signals, of which four at  $\delta$  114.9, 116.3, 127.4, and 132.5 were each assigned to two carbons on two 1,4-disubstituted aromatic rings. The HMBC data suggested that one of the aromatic rings was a *p*-methoxyphenyl group, while the other was a *p*-hydroxyphenyl moiety. The remaining three degrees of unsaturation were assigned to a carbonyl group at  $\delta$  163.7 and two olefinic groups that gave rise to signals at 115.7, 121.7, 122.2, and 147.0. Comparison of the <sup>1</sup>H and <sup>13</sup>C NMR spectra with those of botryllamides A (5) and C (7) indicated that botryllamide E (1) is a nonbrominated analogue of 5 and 7, an assignment that was confirmed by analysis of the HMBC data (Table 1).

\* To whom correspondence should be addressed. Tel: (858) 200-8337. Fax: (858) 587-4088. E-mail: rmanam@nereuspharm.com.





Botryllamide F (2) was isolated in about 90% purity as a colorless oil. The molecular formula,  $C_{18}H_{17}NO_4$ , which was deduced from high-resolution mass measurement of the  $[M + Na]^+$  ion at m/z 334.1062 ( $\Delta$  +0.7 mmu), contained one methylene unit less than that of botryllamide E (1). The IR spectrum contained a very strong band at 3305 cm<sup>-1</sup> (phenol). The <sup>1</sup>H and <sup>13</sup>C NMR spectra contained a single methoxyl signal that gave rise to signals at  $\delta$  3.56 and 59.7, respectively. The HMBC spectrum showed correlations between both the methoxyl signal and H-3 ( $\delta$  6.82) to C-2 ( $\delta$  147.0), which requires the methoxyl group to be at C-2 and infers the presence of two phenolic groups. Analysis of the NMR data confirmed this assignment.

<sup>&</sup>lt;sup>†</sup> Deceased November 23, 2002.

|        |                  |                 | 1                |                  |                  | 2               |                  |                  | 3               |                  |
|--------|------------------|-----------------|------------------|------------------|------------------|-----------------|------------------|------------------|-----------------|------------------|
| carbon | $\delta_{\rm C}$ | $\delta_{ m H}$ | mult.,<br>J (Hz) | HMBC             | $\delta_{\rm C}$ | $\delta_{ m H}$ | mult.,<br>J (Hz) | $\delta_{\rm C}$ | $\delta_{ m H}$ | mult.,<br>J (Hz) |
| 1      | 163.7            |                 |                  |                  | 163.6            |                 |                  | 164.0            |                 |                  |
| 2      | 147.0            |                 |                  |                  | 147.0            |                 |                  | 146.8            |                 |                  |
| 3      | 122.2            | 6.81            | S                | C-1, C-2, C-5    | 122.1            | 6.82            | S                | 122.6            | 6.81            | S                |
| 4      | 125.7            |                 |                  |                  | 125.7            |                 |                  | 125.6            |                 |                  |
| 5      | 132.5            | 7.46            | d, 8.5           | C-3, C-6, C-7    | 132.4            | 7.48            | d, 8.5           | 132.5            | 7.62            | d, 8.5           |
| 6      | 116.3            | 6.67            | d, 8.5           | C-4, C-5, C-6    | 116.3            | 6.69            | d, 8.5           | 116.3            | 6.82            | d, 8.5           |
| 7      | 159.1            |                 |                  |                  | 159.1            |                 |                  | 159.2            |                 |                  |
| 8      | 116.3            | 6.67            | d, 8.5           | C-4, C-5, C-6    | 116.3            | 6.69            | d, 8.5           | 116.3            | 6.82            | d, 8.5           |
| 9      | 132.5            | 7.46            | d, 8.5           | C-3, C-6, C-7    | 132.4            | 7.48            | d, 8.5           | 132.5            | 7.62            | d, 8.5           |
| 10     | 121.7            | 7.30            | d, 14.5          | C-1, C-11, C-12  | 121.1            | 7.25            | d, 14.5          | 123.9            | 7.45            | d, 14.5          |
| 11     | 115.7            | 6.33            | d, 14.5          | C-10, C-13       | 116.1            | 6.30            | d, 14.5          | 112.4            | 6.34            | d, 14.5          |
| 12     | 130.1            |                 |                  |                  | 129.0            |                 |                  | 130.1            |                 |                  |
| 13     | 127.4            | 7.16            | d, 8.5           | C-14, C-15, C-17 | 127.5            | 7.09            | d, 8.5           | 129.8            | 7.52            | S                |
| 14     | 114.9            | 6.73            | d, 8.5           | C-12, C-15, C-16 | 116.2            | 6.61            | d, 8.5           | 112.7            |                 |                  |
| 15     | 159.7            |                 |                  |                  | 157.2            |                 |                  | 150.7            |                 |                  |
| 16     | 114.9            | 6.73            | d, 8.5           | C-12, C-14, C-15 | 116.2            | 6.61            | d, 8.5           | 112.7            |                 |                  |
| 17     | 127.4            | 7.16            | d, 8.5           | C-13, C-15, C-16 | 127.5            | 7.09            | d, 8.5           | 129.8            | 7.52            | S                |
| OMe-2  | 59.8             | 3.54            | 3H, s            | C-2              | 59.7             | 3.56            | 3H, s            | 59.8             | 3.69            | 3H, s            |
| OMe-15 | 55.7             | 3.66            | 3H, s            | C-15             |                  |                 |                  |                  |                 |                  |

Table 1. <sup>1</sup>H and <sup>13</sup>C NMR Data (MeOH-d<sub>4</sub>) for Botryllamides E-G (1-3)

**Table 2.** <sup>1</sup>H and <sup>13</sup>C NMR Data (DMSO- $d_6$ ) for Botryllamide H (4)

| carbon | $\delta_{\mathrm{C}}$ | $\delta_{ m H}$ | mult.,<br>J (Hz) | HMBC               |
|--------|-----------------------|-----------------|------------------|--------------------|
| 1      | 162.6                 |                 |                  |                    |
| 2      | 147.9                 |                 |                  |                    |
| ĩ      | 102.3                 | 7 57            | s                | C-1 C-4 C-5 C-9    |
| 4      | 122.2                 | 1.01            | 5                | 0 1, 0 1, 0 0, 0 0 |
| 5      | 138.3                 |                 |                  |                    |
| 6      | 153.5                 |                 |                  |                    |
| 7      | 112.0                 | 7 13            | d 7              | C-5 C-6 C-9        |
| 8      | 127.8                 | 7.43            | t. 7             | C-4. C-6           |
| 9      | 111.9                 | 7.56            | d. 7             | C-5, C-7           |
| 10     | 120.8                 | 7.43            | dd. 15. 11       | 0 0, 0 1           |
| 11     | 114.3                 | 6.52            | d. 15            | C-10. C-13. C-17   |
| 12     | 127.4                 |                 | ,                |                    |
| 13     | 126.7                 | 7.25            | d. 8.5           | C-11. C-15. C-17   |
| 14     | 115.9                 | 6.73            | d. 8.5           | C-12, C-15, C-16   |
| 15     | 156.4                 |                 | -,               | - ,,               |
| 16     | 115.9                 | 6.73            | d, 8.5           | C-12, C-14, C-15   |
| 17     | 126.7                 | 7.25            | d, 8.5           | C-11, C-13, C-15   |
| 18     | 161.4                 |                 |                  |                    |
| OH-2   |                       | 11.85           | br               | C-1, C-3, C-4      |
| OH-6   |                       | 10.00           | S                | C-5, C-6, C-7      |
| OH-15  |                       | 9.43            | S                | C-14, C-15, C-16   |
| NH     |                       | 11.23           | d, 11            | C-1, C-11 (weak)   |

Botryllamide G (3) was isolated as a colorless gum. The molecular formula,  $C_{18}H_{15}Br_2NO_4$ , which was deduced from the high-resolution mass measurement of the  $[M + Na]^+$  ion at m/z 489.9272 ( $\Delta$  +1.1 mmu), indicated two bromine atoms in place of two hydrogen atoms in botryllamide F (2). The IR spectrum again contained a very broad band at 3285 cm<sup>-1</sup> (phenol). The position of the bromine atoms was elucidated by comparison of the NMR data with those of botryllamide A (5). The data differed from those of 5 in that the expected NMR signals due to the Me-15 group were missing.

Botryllamide H (4) was obtained as a white precipitate that was essentially insoluble in all common solvents except DMSO. The molecular formula,  $C_{18}H_{14}N_2O_4$ , was deduced from the high-resolution mass measurement of the  $[M + H]^+$  ion at m/z 323.1032 ( $\Delta$  +0.1 mmu). The IR spectrum contained a broad band at 3300 (phenol) and bands at 2130, 1630 cm<sup>-1</sup> assigned to isonitrile and amide groups. Both the <sup>1</sup>H and <sup>13</sup>C NMR spectra contained signals that were assigned to a *p*-hydroxyphenyl ring (Table 2, C-12 to C-17). The H-13/17 signals showed a key HMBC

correlation to C-11, and H-11 was correlated to C-13/17. The H-11 signal at  $\delta$  6.52 (d, 1 H, J = 15 Hz) was coupled to the H-10 signal at 7.43 (dd, 1 H, J = 15, 11 Hz),<sup>7</sup> which was in turn coupled to the amide NH signal at 11.23 (d, 1 H, J = 11 Hz). The left-hand portion of botryllamide H (4) was therefore identical to that found in botryllamide F (2). The amide NH signal and the H-3 signal at  $\delta$  7.57 (s, 1 H) showed HMBC correlations to C-1, while the broad OH-2 signal showed correlations to C-1, C-3, and C-4, indicating the presence of an enolized  $\alpha$ -ketoamide adjacent to a second aromatic ring. The substitution pattern around the second aromatic ring was quite unexpected. In the HMBC experiment, H-3 is correlated to C-1, C-4, C-5, and C-9, while OH-6 correlated to C-5, C-6, and C-7. This requires the final substituent to be between the phenol and the enolized  $\alpha$ -ketoamide substituents. This assignment was confirmed by the observation in the <sup>1</sup>H NMR spectrum of three mutually coupled signals at  $\delta$  7.13 (1H, d, J = 7 Hz, H-7), 7.43 (1H, t, J = 7 Hz, H-8), and 7.56 (1H, d, J = 7Hz, H-9).<sup>7</sup> The remaining signal in the <sup>13</sup>C NMR spectrum was at  $\delta$  161.4, which can only be assigned to an isonitrile group, although the chemical shift was not exactly as expected, presumably due to the adjacent phenol group.

The C-10, C-11 double bond stereochemistry of compounds 1-4 was determined as "trans" on the basis of the coupling constants. NOE difference experiments confirmed the trans relationship between H-3 and the methyl ether for compounds 1-3. It was also further confirmed through the <sup>1</sup>H and <sup>13</sup>C NMR chemical shift values of H-3, C-3, and C-2 of compounds 1-4 compared to similar compounds reported in the literature.<sup>5</sup>

The botryllamides were shown to be weak inhibitors of the human colon tumor (HCT-116) cell line (**5**, IC<sub>50</sub> = 33  $\mu$ M; **7**, IC<sub>50</sub> = 28  $\mu$ M; **1**, IC<sub>50</sub> = 30  $\mu$ M; **2**, IC<sub>50</sub> = 85  $\mu$ M (90%); **3**, IC<sub>50</sub> = 110  $\mu$ M). The activity was sufficient to allow bioassay-directed fractionation but did not meet the requirements for further biological evaluation.

#### **Experimental Section**

**General Experimental Procedures.** IR spectra were measured on a Perkin-Elmer 1600 FTIR spectrophotometer. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Varian Gemini 400 MHz spectrometer, and all 2D experiments were performed on a Varian Inova 300 MHz NMR spectrometer. HRMS data were obtained on a MALDI-FTMS mass spectrometer at the Scripps Research Institute. UV spectra were recorded on a Beckman-Coulter DU 640 spectrophotometer. All solvents were redistilled prior to use.

Animal Material. The ascidian Botrylloides tyreum Herdman, 1886 (Collection # NCI-0394) was collected by hand using scuba (-1 m) from a temporary floating bridge between Koror and Babeldaob, Republic of Palau, in 2000 and was immediately frozen. The ascidian was identified by Shirley Parker-Nance (University of Port Elizabeth, South Africa). Voucher specimens are available on request.

Extraction and Purification. The ascidian (350 g wet wt) was cut into thin slices, lyophilized, and extracted with MeOH  $(4 \times 400 \text{ mL})$ . The extracts were concentrated and partitioned between EtOAc and H<sub>2</sub>O to obtain organic (2.75 g) and aqueous (4.72 g) extracts. Only the organic extract inhibited the growth of the HCT-116 cell line (IC<sub>50</sub> =  $30 \,\mu$ g/mL). The organic extract was first subjected to column chromatography on silica gel using a stepwise gradient from hexane to EtOAc as eluant to obtain 13 fractions, of which three adjacent fractions showed HCT-116 inhibition (IC<sub>50</sub> = ca. 6  $\mu$ g/mL). The first of these fractions (300 mg) consisted of almost pure botryllamide A (5), while the second (342 mg) contained approximately 80% botryllamide A (5): these fractions were not purified further. A portion (190 mg) of the third active fraction (448 mg) was fractionated by HPLC on silica using 40% EtOAc in hexane as eluant to obtain botryllamides A (5, 24 mg), F (2, 8 mg), and G (3, 6.5 mg) and a mixed fraction that was further purified by HPLC on a reversed-phase C<sub>18</sub> column to obtain botryllamides C (7, 34 mg) and É (1, 19 mg). A white solid was precipitated out from the more polar fraction. It was further purified by HPLC on a reversed-phase C<sub>18</sub> column to afford botryllamide H (4, 4 mg).

HCT-116 Assay. The HCT-116 cells were plated in 96-well plates and incubated overnight at 37 °C in 5% CO2/air. Compounds were added to the plate and serially diluted. Then the plate was incubated for a further 72 h. Cell viability was then assessed at the end of this period through the use of a CellTiter 96 AQ<sub>ueous</sub> nonradioactive cell proliferation assay (Promega). Inhibition concentration (IC<sub>50</sub>) values are interpreted from the bioreduction of MTS/PMS by living cells into a formazan product (proportional to the number of living cells in each well), which was then determined using a Molecular Devices Emax microplate reader that measured the amount of 490 nm absorbance in each well, and the  $IC_{50}$  value was calculated by a SOFTMax analysis program. Etoposide (Sigma) and DMSO (solvent) were used as positive and negative controls, respectively.

Botryllamide E (1): colorless gum; UV (MeOH) 207 nm ( $\epsilon$ 14 997), 222 nm ( $\epsilon$  12 537), 339 nm ( $\epsilon$  29 804); IR (AgCl)  $\nu_{\rm max}$  Notes

3350 (br), 3260 (br), 1635, 1515 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CD<sub>3</sub>OD), see Table 1; <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD), see Table 1; ESIMS (+ve) m/z 673 [2M + Na]<sup>+</sup>, 348 [M + Na]<sup>+</sup>, 326 [M + H]<sup>+</sup>, (-ve) m/z 324 [M - H]<sup>-</sup>; HRMALDIMS [M + Na]<sup>+</sup> m/z 348.1205 (calcd for C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub>Na, 348.1206).

Botryllamide F (2): colorless oil, ~90% purity; UV (MeOH) 208 nm (e 13 780), 220 nm (e 11 998), 316 nm (e 14 258); IR (AgCl)  $\nu_{\rm max}$  3305 (br), 1600, 1505 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CD<sub>3</sub>OD), see Table 1; <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD), see Table 1; ESIMS (+ve) *m*/*z* 645 [2M + Na]<sup>+</sup>, (-ve) *m*/*z* 310 [M - H]<sup>-</sup>; HRMALDIMS [M + Na]<sup>+</sup> m/z 334.1062 (calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>4</sub>-Na. 334.1066).

**Botryllamide G (3):** colorless gum; UV (MeOH) 208 nm ( $\epsilon$ 20 228), 332 nm (< 22 152); IR (AgCl) v<sub>max</sub> 3285 (br), 1645, 1600, 1510 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CD<sub>3</sub>OD), see Table 1; <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD), see Table 1; ESIMS (+ve) m/z 468 [M + H]+; HRMALDIMS [M + Na]+ m/z 489.9272 (calcd for C<sub>18</sub>H<sub>15</sub><sup>79</sup>Br<sub>2</sub>NO<sub>4</sub>Na, 489.9266).

Botryllamide H (4): white powder; UV (MeOH) 210 nm (*e* 17 627), 249 nm (*e* 12 568), 314 nm (*e* 7787), 344 nm (*e* 7964); IR (AgCl) v<sub>max</sub> 3300 (br), 2130, 1630, 1505 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, DMSO), see Table 2; <sup>13</sup>C NMR (100 MHz, DMSO), see Table 2; ESIMS (+ve) m/z 323 [M + H]+; HRMALDIMS [M +  $H^{+}_{z} m/z 323.1032$  (calcd for  $C_{18}H_{15}N_{2}O_{4}$ , 323.1032).

Acknowledgment. The ascidian was identified by S. Parker-Nance (University of Port Elizabeth, South Africa). Bioassays were performed by C. Sincich. This research was supported by grants from the National Institutes of Health (CA 49084 and CA 67775).

#### **References and Notes**

- (1) Faulkner, D. J. Nat. Prod. Rep. 2002, 19, 1-48, and previous reviews
- (1) Full Milet, D. S. Fait, F. D. R. P. 1907, Rep. 2008, 10, 17–40, and previous reviews in this series.
   (2) John, W. B.; Brent, R. P.; Murray, H. G. M.; Peter, T. N.; Michele, R. P. Nat. Prod. Rep. 2004, 21, 1–49, and previous review in this series.
   (3) Davidson, B. S. Chem. Rev. 1993, 93, 1771–1791.
- (4) Taylor, S. W.; Kammerer, B.; Bayer, E. Chem. Rev. 1997, 97, 333-34Ğ.
- (5) McDonald, L. A.; Swersey, J. C.; Ireland, C. M.; Carroll, A. R.; Coll, J. C.; Bowden, B. F.; Fairchild, C. R.; Cornell, L. *Tetrahedron* 1995, 51, 5237–5244.
- The true origin of the ascidian is not known because the bridge had been towed from the Philippines. The ascidian was not found elsewhere in Palau.
- (7) The coupling constants of the two overlapping signals at  $\delta$  7.43 (H-8 and H-10) could be determined by dropwise addition of acetone-*d*<sub>6</sub>. The *meta*-coupling between H-7 and H-9 was observed in the DMSO $d_6/acetone - d_6$  spectrum.

#### NP0499618